Plates were immediately destained with four washes of ddH2O and p

Plates were immediately destained with four washes of ddH2O and photographed. Nuclear extracts were prepared as described.18 A consensus double-stranded Selleck DAPT HRE (Santa Cruz Biotechnology, Santa Cruz, CA) oligonucleotide was used for electrophoretic mobility shift assay (EMSA). End-labeling, oligonucleotide purification, and EMSA were

performed as described.19 A total of 30-50 μg nuclear extract was resolved on 10% polyacrylamide gels and transferred overnight to nitrocellulose. Membranes were blocked overnight with blocking buffer (5% bovine serum albumin in Tris-Borate-SDS with 0.01% Tween 20) with refrigeration, and subsequently probed overnight with anti–HIF-1α (R&D Biosciences) mouse monoclonal antibodies. Detection was

performed using anti-mouse horseradish-peroxidase–conjugated secondary antibody and chemiluminescent substrates. Band density was quantified using Labworks 4.0 image analysis. Statistical analysis was performed with Microsoft Excel using a two-tailed Student t test. P < 0.05 was considered significant. As has been reported elsewhere, ethanol feeding increased liver weight to body www.selleckchem.com/products/azd-1208.html weight ratio, liver triglyceride, and serum ALT values and resulted in liver steatosis in WT mice compared with isocaloric diet-fed controls (Fig. 1A-E). To test our hypothesis that alcohol may increase the expression and activity of hypoxia-inducible factor-1, nuclear extracts from liver tissue

were evaluated for HIF-1 expression. We found that HIF-1α mRNA was up-regulated by ethanol feeding in WT mice (Fig. 1D). HIF-1α protein was also more abundant in alcohol-fed than in pair-fed livers (Fig. 2A,B). HIFs are primarily degraded by posttranslational hydroxylation and subsequent degradation of the alpha subunits by the ubiquitin/proteasomal system. To confirm that HIF-1α was transcriptionally active, we performed an EMSA using a commercially available HRE oligonucleotide. Our results showed a significant up-regulation of HIF DNA-binding activity in ethanol-fed animals versus pair-fed animals, suggesting HIF-1 activation (Fig. 2C,D). In order to determine the contribution of HIF-1α to ethanol-induced liver pathology, we used a mouse model selleck chemicals of hepatocyte-specific HIF-1α activation (HIF1dPA) described by Kim et al.10 Due to a mixed genetic background, Alb-Cre littermates that did not harbor the HIF1dPA transgene were selected as controls. To confirm the activation of HIF-1α in HIF1dPA mice, HIF-1α DNA-binding activity was examined in liver nuclear extracts from HIF1dPA and Alb-Cre control mice, and a significant up-regulation of HIF-1α DNA-binding activity was observed (P < 0.01; HIF1dPA pair-fed versus Alb-Cre pair-fed) (Supporting Fig. 1.) We found increased liver weight/body weight (LW/BW) ratios in HIF1dPA mice versus Alb-Cre controls even without alcohol feeding (Fig 3A).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>