So we would like to propose a new method by which highly fluorescent CdTe QDs which can be directly used for biomedical applications can be prepared. In this study, we used 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers to prepare highly fluorescent CdTe QDs. MPA is always used to prepare luminescent CdTe QDs in aqueous phase. HPAMAM has low cytotoxicity and can be used
to gene transfection and drug delivery [24]. Consequently, by using MPA and HPAMAM as co-stabilizers, highly luminescent and biocompatible CdTe QDs can be synthesized. The resulting CdTe QDs can be directly applied to bioimaging, Selleck Palbociclib gene transfection, etc. Methods Materials Amine-terminated HPAMAM was synthesized according to our previous work [25]. After endcapping by palmityl CB-839 in vivo chloride, the weight average molecular weight (Mw) of HPAMAM measured by gel permeation chromatography (GPC) was about 1.1 × 104 and the molecular weight polydispersity
(PDI) was 2.7. CdCl2 · 2.5 H2O (99%), NaBH4 (96%), tellurium powder (99.999%), and methanol were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. 3-Mercaptopropionic acid (MPA, >99%) was purchased from Fluka, St. Louis, MO, USA. The ultrapure water with 18.2 MΩ · cm was used in all experiments. Synthesis of CdTe QDs with MPA and HPAMAM as co-stabilizers MPA (26 μL) was added to 100 mL CdCl2 (0.125 mmol) aqueous solution. oxyclozanide After stirring for several hours, pH value of the aqueous solution was adjusted to 8.2 with 1 M NaOH. Then, 120 mg HPAMAM in 2 mL water was drop-added under N2 atmosphere and stirred for 24 h. After deaeration with N2 for 15 min, 10 mL
oxygen-free NaHTe solution was injected at 5°C under vigorous stirring; thus, CdTe precursor solution stabilized by MPA and HPAMAM was obtained. Then, the mixture was irradiated at different times under microwave (PreeKem, Shanghai, China, 300 W, 100°C) to get a series of samples with various colors. Characterization of the as-prepared CdTe QDs pH values were measured by a Starter 3C digital pH meter, Ohaus, USA. Transmission electron microscopy (TEM), selected area electron diffraction (SAED), and elemental characterization were done on a JEOL 2010 microscope (Akishima-shi, Japan) with energy-dispersive X-ray spectrometer (EDS) at an accelerating voltage of 200 kV. X-ray powder diffraction (XRD) spectrum was taken on Rigaku Ultima III X-ray diffractometer (Shibuya-ku, Japan) operated at 40 kV voltage and 30 mA current with Cu Ka radiation. UV-visible (vis) spectra were recorded on a Varian Cary 50 UV/Vis spectrometer, Agilent Technologies, Inc., Santa Clara, CA, USA. Emission spectra were collected using a Varian Cary spectrometer. Thermogravimetric analysis (TGA) was done under nitrogen on a STA 409 PC thermal analyzer, Netzsch, Germany.