Conflict of Interests The authors declare that there is no confli

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.
In the past few decades, urban rail transit (URT) has become one of the most important urban commuter transportation modes [1]. Due to the advantages of large capacity, fast speed, and high punctuality, more and more commuters are inclined to choose URT as their trip mode [2].

However, the frequency selleck of accidents on URT systems has increased greatly, harming passenger safety and causing severe traffic delays. Moreover, the consequences of accidents in URT are often much more serious than those occurring elsewhere. The reason for this is, firstly, that URT involves dense passenger flow, such as Beijing, the traffic volume of which at peak hours can be as high as ten million [3]. Secondly, most of the URT systems are in underground spaces with closed

environments [4]. When accidents happen, the available passageways to safety for passengers can be extremely narrow, which may result in disasters. With the continued increase in accidents, security operation of URT system has been a hot research issue among operation departments and scholars. Once accidents happen, the most important task is to evacuate passengers to a safe space. However, the lack of contingency plans can make this very difficult. The previous literature has pointed out that contingency plans and safety evaluations should be carried out throughout the process of planning, designing, constructing, and operating URT [5–7]. Many personnel evacuation models have been developed to quantify the evacuation capacity or velocity and applied to the design of URT passenger evacuation. Previous studies related to passenger evacuation in URT emergencies

mainly involve the following four aspects: fire emergency, equipment failure, trampling accidents, and unexpectedly large passenger flow [8]. For fire emergencies, Li et al. [9] and Yang et al. [10] carried out a computer simulation of the personnel evacuation progress based on the occupant evacuation dynamic model. The results showed that only when RSET (the real evacuation time from Carfilzomib the start of the fire to the end of the evacuation) was less than ASET (the standard evacuation time, usually more than six minutes in the case of fire) could passengers be evacuated safely. Regarding equipment failure, Cheng and Yang [11] established an Emergency Evacuation Capacity (EEC) model to estimate the evacuation capacity of a subway station by analyzing key influential factors. Fridolf et al. [12] performed a train evacuation experiment to study the effects of different train exit configurations on the flow rate of people passing through an exit inside a tunnel. The results revealed that the height of the door, the material of the tunnel floor, the presence of emergency ladders, lighting, and the population density outside the train all significantly affected the flow rate. For trampling accidents, Liu et al.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>